
TomoPy Documentation
Release 1.2.1

Argonne National Laboratory

Nov 05, 2018

Contents

1 Contribute 3

2 Table of Contents 5

3 License 37

4 Indices and tables 39

Bibliography 41

i

ii

TomoPy Documentation, Release 1.2.1

TomoPy is an open-source Python package for tomographic data processing and image reconstruction.

• Image reconstruction algorithms for tomography.

• Various filters, ring removal algorithms, phase retrieval algorithms.

• Forward projection operator for absorption and wave propagation.

Contents 1

https://github.com/tomopy/tomopy.git

TomoPy Documentation, Release 1.2.1

2 Contents

CHAPTER 1

Contribute

• Issue Tracker: https://github.com/tomopy/tomopy/issues

• Documentation: https://github.com/tomopy/tomopy/tree/master/doc

• Source Code: https://github.com/tomopy/tomopy/tree/master/tomopy

• Tests: https://github.com/tomopy/tomopy/tree/master/test

3

https://github.com/tomopy/tomopy/issues
https://github.com/tomopy/tomopy/tree/master/doc
https://github.com/tomopy/tomopy/tree/master/tomopy
https://github.com/tomopy/tomopy/tree/master/test

TomoPy Documentation, Release 1.2.1

4 Chapter 1. Contribute

CHAPTER 2

Table of Contents

2.1 About

Tomographic reconstruction creates three-dimensional views of an object by combining two-dimensional images taken
from multiple directions, for example, this is how a CAT (computer-aided tomography) scanner generates 3D views
of the heart or brain.

Data collection can be rapid, but the required computations are massive and often the beamline staff can be over-
whelmed by data that are collected far faster than corrections and reconstruction can be performed [C15]. Further,
many common experimental perturbations can degrade the quality of tomographs, unless corrections are applied.

To address the needs for image correction and tomographic reconstruction in an instrument independent manner, the
TomoPy code was developed [A1], which is a parallelizable high performance reconstruction code.

2.2 Install directions

This section covers the basics of how to download and install TomoPy.

Contents:

• Supported Environments

• Installing from Conda (Recommended)

– Updating the installation

• Installing from source with Conda

– Installing dependencies

– Common issues

• Importing TomoPy

5

TomoPy Documentation, Release 1.2.1

2.2.1 Supported Environments

TomoPy is tested, built, and distributed for python 2.7 3.5 3.6 on Linux/macOS and python 3.5 3.6 on Windows 10.

2.2.2 Installing from Conda (Recommended)

If you only want to run TomoPy, not develop it, then you should install through a package manager. Conda, our
supported package manager, can install TomoPy and its dependencies for you.

First, you must have Conda installed, then open a terminal or a command prompt window and run:

$ conda install -c conda-forge tomopy

This will install TomoPy and all the dependencies from the conda-forge channel.

Updating the installation

TomoPy is an active project, so we suggest you update your installation frequently. To update the installation run:

$ conda update -c conda-forge tomopy

For some more information about using Conda, please refer to the docs.

2.2.3 Installing from source with Conda

Sometimes an adventurous user may want to get the source code, which is always more up-to-date than the one
provided by Conda (with more bugs of course!).

For this you need to get the source from the TomoPy repository on GitHub. Download the source to your local
computer using git by opening a terminal and running:

$ git clone https://github.com/tomopy/tomopy.git

in the folder where you want the source code. This will create a folder called tomopy which contains a copy of the
source code.

Installing dependencies

You will need to install all the dependencies listed in requirements.txt or meta.yaml files. For example,
requirements can be installed using Conda by running:

$ conda install --file requirements.txt

After navigating to inside the tomopy directory, you can install TomoPy by building/compiling the shared libraries and
running the install script:

$ python build.py
$ pip install .

Common issues

No issues with the current build system have been reported.

6 Chapter 2. Table of Contents

http://continuum.io/downloads
http://conda.pydata.org/docs
https://github.com/tomopy/tomopy

TomoPy Documentation, Release 1.2.1

2.2.4 Importing TomoPy

When importing, it is best to import TomoPy before importing numpy. See this thread for details.

2.3 Tomographic data files

For reading tomography files formatted in different ways, please go check the DXchange package. There are various
examples and demonstration scripts about how to use the package for loading your datasets.

The package can be installed by simply running the following in a terminal:

conda install -c conda-forge dxchange

For a repository of experimental and simulated data sets please check TomoBank [C6].

2.4 Development

This section explains the basics for developers who wish to contribute to the TomoPy project.

Contents:

• Cloning the repository

• Running the Tests

• Coding conventions

• Package versioning

• Committing changes

• Contributing back

2.4.1 Cloning the repository

The project is maintained on GitHub, which is a version control and a collaboration platform for software developers.
To start first register on GitHub and fork the TomoPy repository by clicking the Fork button in the header of the
TomoPy repository:

2.3. Tomographic data files 7

https://github.com/tomopy/tomopy/issues/178
http://dxchange.readthedocs.io
http://tomobank.readthedocs.io/
https://github.com
https://github.com/tomopy/tomopy

TomoPy Documentation, Release 1.2.1

This creates a copy of the project in your personal GitHub space. The next thing you want to do is to clone it to your
local machine. You can do this by clicking the Clone in Desktop button in the bottom of the right hand side bar:

8 Chapter 2. Table of Contents

TomoPy Documentation, Release 1.2.1

This will launch the GitHub desktop application (available for both Mac and Win) and ask you where you want to save
it. Select a location in your computer and feel comfortable with making modifications in the code.

2.4.2 Running the Tests

Tomopy has a suite of python unit tests that live in the /test directory, where they follow the same tree structure as
the packages under /tomopy. These are automatically run by TravisCI when you make a pull request (See below for
how to do that) and you can run them manually using pytest, or whichever python test runner you prefer. To make it
easier to run tests on the changes you make to the code, it is recommended that you install TomoPy in development
mode. (python setup.py develop)

The pytest test runner, is available through pip or anaconda.

To run the tests open a terminal, navigate to your project folder, then run py.test.

To run sections of tests, pass py.test a directory or filepath, as in py.test test/test_recon or py.test
test/test_recon/test_rotation.py.

When writing tests, at minimum we try to check all function returns with synthetic data, together with some dimension,
type, etc. Writing tests is highly encouraged!

2.4. Development 9

http://mac.github.com
http://windows.github.com
http://doc.pytest.org/en/latest/

TomoPy Documentation, Release 1.2.1

2.4.3 Coding conventions

We try to keep our code consistent and readable. So, please keep in mind the following style and syntax guidance
before you start coding.

First of all the code should be well documented, easy to understand, and integrate well into the rest of the project. For
example, when you are writing a new function always describe the purpose and the parameters:

def my_awesome_func(a, b):
"""
Adds two numbers.

Parameters

a : scalar (float)

First number to add

b : scalar (float)
Second number to add

Returns

output : scalar (float)

Added value
"""
return a+b

2.4.4 Package versioning

We follow the X.Y.Z (Major.Minor.Patch) semantic for package versioning. The version should be updated before
each pull request accordingly. The patch number is incremented for minor changes and bug fixes which do not change
the software’s API. The minor version is incremented for releases which add new, but backward-compatible, API
features, and the major version is incremented for API changes which are not backward-compatible. For example,
software which relies on version 2.1.5 of an API is compatible with version 2.2.3, but not necessarily with 3.2.4.

2.4.5 Committing changes

After making some changes in the code, you may want to take a snapshot of the edits you made. That’s when you make
a commit. To do this, launch the GitHub desktop application and it should provide you all the changes in your code
since your last commit. Write a brief Summary and Description about the changes you made and click the Commit
button:

10 Chapter 2. Table of Contents

TomoPy Documentation, Release 1.2.1

You can continue to make changes, add modules, write your own functions, and take more Commit snapshots of your
code writing process.

2.4.6 Contributing back

Once you feel that the functionality you added would benefit the community, then you should consider contributing
back to the TomoPy project. You will need to push your local commits to GitHub, then go to your online GitHub
repository of the project and click on the green button to compare, review, and create a pull request.

2.4. Development 11

TomoPy Documentation, Release 1.2.1

After clicking on this button, you are presented with a review page where you can get a high-level overview of what
exactly has changed between your forked branch and the original TomoPy repository. When you’re ready to submit
your pull request, click Create pull request:

12 Chapter 2. Table of Contents

TomoPy Documentation, Release 1.2.1

Clicking on Create pull request sends you to a discussion page, where you can enter a title and optional description.
It’s important to provide as much useful information and a rationale for why you’re making this Pull Request in the
first place.

When you’re ready typing out your heartfelt argument, click on Send pull request. You’re done!

2.5 Release Notes

2.5.1 TomoPy 1.0.0 Release Notes

• New features

• New functions

• New packages in Conda channel

• Deprecated features

• Backward incompatible changes

• Contributors

2.5. Release Notes 13

TomoPy Documentation, Release 1.2.1

New features

• FFTW implementation is now adopted. All functions that rely on FFTs such as gridrec, phase retrieval, stripe
removal, etc. are now using the FFTW implementation through PyFFTW.

• sinogram_order is added to recon as an additional argument. It determines whether data is a stack of
sinograms (True, y-axis first axis) or a stack of radiographs (False). Default is False, but we plan to make it True
in the upcoming release.

• Reconstruction algorithms only copies data if necessary.

• Updated library to support new mproc and recon functions. The data is now passed in sinogram order to recon
functions. Also updated tests.

• ncores and nchunks are now independent.

• Setting nchunks to zero removes the dimension. That allows for the functions work on 2D data rather than 3D
data.

• Sliced data are used so that each process only receives the data it needs. No more istart and iend variables
for setting up indices in parallel processes.

• Functions will reuse sharedmem arrays if they can.

New functions

• minus_log

• trim_sinogram

New packages in Conda channel

• dxchange 0.1.1

• fftw 3.3.4

• pyfftw 0.9.2

• pywavelets 0.4.0

• xraylib 3.1.0

Deprecated features

• All data I/O related functions are deprecated. They are available through DXchange package.

• Removed fft.h and fft.c, they are now completely replaced with FFTW.

Backward incompatible changes

• emission argument is removed from recon. After this change the tomographic image reconstruction algo-
rithms always assume data to be normalized.

14 Chapter 2. Table of Contents

www.fftw.org
https://hgomersall.github.io/pyFFTW/
http://tomopy.readthedocs.io/en/latest/api/tomopy.prep.normalize.html#tomopy.prep.normalize.minus_log
http://tomopy.readthedocs.org/en/latest/api/tomopy.misc.morph.html#tomopy.misc.morph.trim_sinogram
https://anaconda.org/dgursoy/dxchange
https://anaconda.org/dgursoy/fftw
https://anaconda.org/dgursoy/pyfftw
https://anaconda.org/dgursoy/pywavelets
https://anaconda.org/dgursoy/xraylib
http://dxchange.rtfd.org

TomoPy Documentation, Release 1.2.1

Contributors

• Arthur Glowacki (@aglowacki)

• Daniel Pelt (@dmpelt)

• Dake Feng (@dakefeng)

• Doga Gursoy (@dgursoy)

• Francesco De Carlo (@decarlof)

• Lin Jiao (@yxqd)

• Luis Barroso-Luque (@lbluque)

• Michael Sutherland (@michael-sutherland)

• Rafael Vescovi (@ravescovi)

• Thomas Caswell (@tacaswell)

• Pete R. Jemian (@prjemian)

• Wei Xu (@celiafish)

2.6 API reference

This section contains the API reference and usage information for TomoPy.

2.6. API reference 15

https://github.com/aglowacki
https://github.com/dmpelt
https://github.com/dakefeng
https://github.com/dgursoy
https://github.com/decarlof
https://github.com/yxqd
https://github.com/lbluque
https://github.com/michael-sutherland
https://github.com/ravescovi
https://github.com/tacaswell
https://github.com/prjemian
https://github.com/celiafish

TomoPy Documentation, Release 1.2.1

TomoPy Modules:

2.6.1 tomopy.misc.corr

2.6.2 tomopy.misc.morph

2.6.3 tomopy.misc.phantom

2.6.4 tomopy.prep.alignment

2.6.5 tomopy.prep.normalize

2.6.6 tomopy.prep.phase

2.6.7 tomopy.prep.stripe

2.6.8 tomopy.recon.algorithm

2.6.9 tomopy.recon.rotation

2.6.10 tomopy.sim.project

2.6.11 tomopy.sim.propagate

2.7 Examples

This section contains Jupyter Notebooks and Python scripts examples for various tomoPy functions.

To run these examples in a notebooks install Jupyter or run the python scripts from here

2.7.1 Gridrec

Here is an example on how to use the gridrec [C5] reconstruction algorithm with TomoPy [A1]. You can download
the python scritp here or the Jupyter notebook here

%pylab inline

Install TomoPy then:

import tomopy

Tomographic data input in TomoPy is supported by DXchange.

import dxchange

matplotlib provide plotting of the result in this notebook. Paraview or other tools are available for more sophisticated
3D rendering.

import matplotlib.pyplot as plt

Set the path to the micro-CT data to reconstruct.

16 Chapter 2. Table of Contents

http://ipython.org/notebook.html
http://jupyter.readthedocs.org/en/latest/running.html
http://ipython.org/notebook.html
http://jupyter.readthedocs.org/en/latest/install.html
https://github.com/tomopy/tomopy/tree/master/doc/demo
http://tomopy.readthedocs.io/en/latest/
http://tomopy.readthedocs.io/en/latest/install.html
http://dxchange.readthedocs.io
http://www.paraview.org/

TomoPy Documentation, Release 1.2.1

fname = '../../tomopy/data/tooth.h5'

Select the sinogram range to reconstruct.

start = 0
end = 2

tooth.h5 data set file format follows the APS beamline 2-BM and 32-ID data-exchange file format definition. Major
synchrotron file format examples are available at DXchange.

proj, flat, dark, theta = dxchange.read_aps_32id(fname, sino=(start, end))

Plot the sinogram:

plt.imshow(proj[:, 0, :], cmap='Greys_r')
plt.show()

If the angular information is not avaialable from the raw data you need to set the data collection angles. In this case
theta is set as equally spaced between 0-180 degrees.

if (theta is None):
theta = tomopy.angles(proj.shape[0])

else:
pass

Perform the flat-field correction of raw data:

𝑝𝑟𝑜𝑗 − 𝑑𝑎𝑟𝑘

𝑓𝑙𝑎𝑡− 𝑑𝑎𝑟𝑘

proj = tomopy.normalize(proj, flat, dark)

Tomopy provides various methods ([C10], [C22], [C14]) to find the rotation center.

rot_center = tomopy.find_center(proj, theta, init=290, ind=0, tol=0.5)

tomopy.rotation:Trying center: [290.]
tomopy.rotation:Trying center: [304.5]
tomopy.rotation:Trying center: [275.5]
tomopy.rotation:Trying center: [282.75]
tomopy.rotation:Trying center: [297.25]
tomopy.rotation:Trying center: [304.5]
tomopy.rotation:Trying center: [304.5]
tomopy.rotation:Trying center: [293.625]

(continues on next page)

2.7. Examples 17

http://www.aps.anl.gov
https://www1.aps.anl.gov/Imaging
http://dxfile.readthedocs.io
http://dxchange.readthedocs.io/en/latest/source/demo.html
http://dxchange.readthedocs.io/en/latest/source/api/dxchange.exchange.html
http://tomopy.readthedocs.io/en/latest/api/tomopy.recon.rotation.html

TomoPy Documentation, Release 1.2.1

(continued from previous page)

tomopy.rotation:Trying center: [290.]
tomopy.rotation:Trying center: [295.4375]
tomopy.rotation:Trying center: [291.8125]
tomopy.rotation:Trying center: [294.53125]
tomopy.rotation:Trying center: [295.4375]
tomopy.rotation:Trying center: [294.078125]

Calculate

−𝑙𝑜𝑔(𝑝𝑟𝑜𝑗)

proj = tomopy.minus_log(proj)

Reconstruction using Gridrec algorithm.Tomopy provides various reconstruction methods including the one part of
the ASTRA toolbox.

recon = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec')

Mask each reconstructed slice with a circle.

recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)

plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

2.7.2 Using the ASTRA toolbox through TomoPy

Here is an example on how to use the ASTRA toolbox through its integration with TomoPy, as published in [A2].

18 Chapter 2. Table of Contents

http://tomopy.readthedocs.io/en/latest/api/tomopy.recon.algorithm.html
https://sourceforge.net/p/astra-toolbox/wiki/Home/
http://www.astra-toolbox.com
http://tomopy.readthedocs.io/en/latest/

TomoPy Documentation, Release 1.2.1

%pylab inline

Install the ASTRA toolbox and TomoPy then:

import tomopy

DXchange is installed with tomopy to provide support for tomographic data loading. Various data format from all
major synchrotron facilities are supported.

import dxchange

matplotlib provide plotting of the result in this notebook. Paraview or other tools are available for more sophisticated
3D rendering.

import matplotlib.pyplot as plt

Set the path to the micro-CT data to reconstruct.

fname = '../../tomopy/data/tooth.h5'

Select the sinogram range to reconstruct.

start = 0
end = 2

This data set file format follows the APS beamline 2-BM and 32-ID definition. Other file format readers are available
at DXchange.

proj, flat, dark, theta = dxchange.read_aps_32id(fname, sino=(start, end))

Plot the sinogram:

plt.imshow(proj[:, 0, :], cmap='Greys_r')
plt.show()

If the angular information is not avaialable from the raw data you need to set the data collection angles. In this case
theta is set as equally spaced between 0-180 degrees.

if (theta is None):
theta = tomopy.angles(proj.shape[0])

else:
pass

2.7. Examples 19

http://www.astra-toolbox.com/docs/install.html
http://tomopy.readthedocs.io/en/latest/install.html
http://dxchange.readthedocs.io
http://dxchange.readthedocs.io/en/latest/source/demo.html
http://www.paraview.org/
http://www.aps.anl.gov
https://www1.aps.anl.gov/Imaging
http://dxchange.readthedocs.io/en/latest/source/api/dxchange.exchange.html

TomoPy Documentation, Release 1.2.1

Perform the flat-field correction of raw data:

𝑝𝑟𝑜𝑗 − 𝑑𝑎𝑟𝑘

𝑓𝑙𝑎𝑡− 𝑑𝑎𝑟𝑘

proj = tomopy.normalize(proj, flat, dark)

Tomopy provides various methods to find rotation center.

rot_center = tomopy.find_center(proj, theta, init=290, ind=0, tol=0.5)

Calculate

−𝑙𝑜𝑔(𝑝𝑟𝑜𝑗)

proj = tomopy.minus_log(proj)

Reconstruction with TomoPy

Reconstruction can be performed using either TomoPy’s algorithms, or the algorithms of the ASTRA toolbox.

To compare, we first show how to reconstruct an image using TomoPy’s Gridrec algorithm:

recon = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec')

Mask each reconstructed slice with a circle.

recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)

plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

20 Chapter 2. Table of Contents

http://tomopy.readthedocs.io/en/latest/api/tomopy.recon.rotation.html

TomoPy Documentation, Release 1.2.1

Reconstruction with the ASTRA toolbox

To reconstruct the image with the ASTRA toolbox instead of TomoPy, change the algorithm keyword to tomopy.
astra, and specify the projection kernel to use (proj_type) and which ASTRA algorithm to reconstruct with
(method) in the options keyword.

More information about the projection kernels and algorithms that are supported by the ASTRA toolbox can be found
in the documentation: projection kernels and algorithms. Note that only the 2D (i.e. slice-based) algorithms are
supported when reconstructing through TomoPy.

For example, to use a line-based CPU kernel and the FBP method, use:

options = {'proj_type':'linear', 'method':'FBP'}
recon = tomopy.recon(proj, theta, center=rot_center, algorithm=tomopy.astra,
→˓options=options)
recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

If you have a CUDA-capable NVIDIA GPU, reconstruction times can be greatly reduced by using GPU-based algo-
rithms of the ASTRA toolbox, especially for iterative reconstruction methods.

To use the GPU, change the proj_type option to 'cuda', and use CUDA-specific algorithms (e.g. 'FBP_CUDA'
for FBP):

options = {'proj_type':'cuda', 'method':'FBP_CUDA'}
recon = tomopy.recon(proj, theta, center=rot_center, algorithm=tomopy.astra,
→˓options=options)
recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

2.7. Examples 21

http://www.astra-toolbox.com/docs/proj2d.html
http://www.astra-toolbox.com/docs/algs/index.html

TomoPy Documentation, Release 1.2.1

Many algorithms of the ASTRA toolbox support additional options, which can be found in the documentation. These
options can be specified using the extra_options keyword.

For example, to use the GPU-based iterative SIRT method with a nonnegativity constraint, use:

extra_options ={'MinConstraint':0}
options = {'proj_type':'cuda', 'method':'SIRT_CUDA', 'num_iter':200, 'extra_options
→˓':extra_options}
recon = tomopy.recon(proj, theta, center=rot_center, algorithm=tomopy.astra,
→˓options=options)
recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

22 Chapter 2. Table of Contents

http://www.astra-toolbox.com/docs/algs/index.html

TomoPy Documentation, Release 1.2.1

2.7.3 Reconstruction with UFO

UFO is a general-purpose image processing framework developed at the Karlsruhe Institute of Technology and uses
OpenCL to execute processing tasks on multiple accelerator devices such as NVIDIA and AMD GPUs, AMD and
Intel CPUs as well as Intel Xeon Phi cards.

Here is an example on how to use TomoPy with UFO and its accompanying reconstruction algorithms.

Install TomoPy, ufo-core and ufo-filters. Make sure to install the Python Numpy interfaces in the python subdirectory
of ufo-core.

DXchange is installed with tomopy to provide support for tomographic data loading. Various data format from all
major synchrotron facilities are supported.

import dxchange

matplotlib allows us to plot the result in this notebook.

import matplotlib.pyplot as plt

Set the path to the micro-CT dataset and the sinogram range to reconstruct.

fname = 'tooth.h5'
start, end = (0, 2)

This dataset file format follows the APS beamline 2-BM and 32-ID definition. Other file format readers are available
at DXchange.

proj, flat, dark, theta = dxchange.read_aps_32id(fname, sino=(start, end))

Plot the sinogram:

2.7. Examples 23

http://ufo-core.readthedocs.io/en/latest/
http://tomopy.readthedocs.io/en/latest/
http://tomopy.readthedocs.io/en/latest/install.html
http://ufo-core.readthedocs.io/en/latest/
http://ufo-filters.readthedocs.io/en/master/
http://dxchange.readthedocs.io
http://dxchange.readthedocs.io/en/latest/source/demo.html
http://www.aps.anl.gov
https://www1.aps.anl.gov/Imaging
http://dxchange.readthedocs.io/en/latest/source/api/dxchange.exchange.html

TomoPy Documentation, Release 1.2.1

plt.imshow(proj[:, 0, :], cmap='Greys_r')
plt.show()

If the angular information is not available from the raw data you need to set the data collection angles. In this case
theta is set as equally spaced between 0-180 degrees.

if (theta is None):
theta = tomopy.angles(proj.shape[0])

else:
pass

Perform the flat-field correction of raw data:

𝑝𝑟𝑜𝑗 − 𝑑𝑎𝑟𝑘

𝑓𝑙𝑎𝑡− 𝑑𝑎𝑟𝑘

proj = tomopy.normalize(proj, flat, dark)

Tomopy provides various methods to find rotation center.

center = tomopy.find_center(proj, theta, init=290, ind=0, tol=0.5)

Calculate

− log(𝑝𝑟𝑜𝑗)

proj = tomopy.minus_log(proj)

Now, reconstruct using UFO’s filtered backprojection algorithm. Note, that we must set ncore to 1 in order to let
UFO do the multi-threading. If left to the default value or set to a value other than 1 will crash the reconstruction.

recon = tomopy.recon(proj, theta, center=center, algorithm=ufo_fbp, ncore=1)

Mask each reconstructed slice with a circle.

recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)

plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

24 Chapter 2. Table of Contents

http://tomopy.readthedocs.io/en/latest/api/tomopy.recon.rotation.html

TomoPy Documentation, Release 1.2.1

2.7.4 Vector Reconstruction

The vector reconstruction algorithm can be used for instance, to reconstruct the magnetization vector field inside a
magnetic sample.

Here is an example on how to use the vector reconstruction algorithm [B2] [A4] with TomoPy[A1].

From a reconstructed 3D object to its projections and back

In order to test the algorithm, the projections of a reconstructed oject can be computed, and from these projections we
can come back to the reconstructed model object. Finally we will compare the results of the vector field reconstruction
against the initial object.

All datasets used in this tutorial are available in tomoBank.

First, let’s make the necessary imports

import dxchange
import tomopy
import numpy as np
import matplotlib.pyplot as plt
import time

Let’s load the object: the three components of the magnetization vector all throughout the object. The object will be
padded in order to have a cubic object. Afterwards it will be downsampled to make faster computations.

obx = dxchange.read_tiff('M4R1_mx.tif').astype('float32')
oby = dxchange.read_tiff('M4R1_my.tif').astype('float32')
obz = dxchange.read_tiff('M4R1_mz.tif').astype('float32')

npad = ((182, 182), (64, 64), (0, 0))
obx = np.pad(obx, npad, mode='constant', constant_values=0)

(continues on next page)

2.7. Examples 25

http://tomopy.readthedocs.io/en/latest/
https://tomobank.readthedocs.io/en/latest/source/phantom/docs.phantom.magnetic.html

TomoPy Documentation, Release 1.2.1

(continued from previous page)

oby = np.pad(oby, npad, mode='constant', constant_values=0)
obz = np.pad(obz, npad, mode='constant', constant_values=0)

obx = tomopy.downsample(obx, level=2, axis=0)
obx = tomopy.downsample(obx, level=2, axis=1)
obx = tomopy.downsample(obx, level=2, axis=2)

oby = tomopy.downsample(oby, level=2, axis=0)
oby = tomopy.downsample(oby, level=2, axis=1)
oby = tomopy.downsample(oby, level=2, axis=2)

obz = tomopy.downsample(obz, level=2, axis=0)
obz = tomopy.downsample(obz, level=2, axis=1)
obz = tomopy.downsample(obz, level=2, axis=2)

Define the projection angles: 31 angles, from 90 to 270 degrees:

ang = tomopy.angles(31, 90, 270)

And calculate the projections of the object taking rotation axes around the three perpendicular cartesian axes:

prj1 = tomopy.project3(obx, oby, obz, ang, axis=0, pad=False)
prj2 = tomopy.project3(obx, oby, obz, ang, axis=1, pad=False)
prj3 = tomopy.project3(obx, oby, obz, ang, axis=2, pad=False)

The three coordinates of a given projection can be visualized as follows:

fig = plt.figure(figsize=(15, 8))
ax1 = fig.add_subplot(1, 3, 1)
ax1.imshow(obx[52,:,:])
ax2 = fig.add_subplot(1, 3, 2)
ax2.imshow(oby[52,:,:])
ax3 = fig.add_subplot(1, 3, 3)
ax3.imshow(obz[52,:,:])

Finally we will reconstruct the vector field components, taking as input the projections that we have calculated thanks
to the first 3D initial object. The number of iterations can be adapted to have a faster but more imprecise reconstruction,
or to have a more precise reconstruction.

rec1, rec2, rec3 = tomopy.vector3(prj1, prj2, prj3, ang, ang, ang, axis1=0, axis2=1,
→˓axis3=2, num_iter=100)

(continues on next page)

26 Chapter 2. Table of Contents

TomoPy Documentation, Release 1.2.1

(continued from previous page)

dxchange.write_tiff(rec1)
dxchange.write_tiff(rec2)
dxchange.write_tiff(rec3)

Comparison of results against input object

In this section, we compare the results of the vector field components obtained thanks to the tomopy reconstruction,
against the vector field components of the object given as input:

Comparison of the first magnetization vector component against the input data object (for a given slice).

fig = plt.figure(figsize=(9, 7))
ax1 = fig.add_subplot(1, 2, 1)
ax1.imshow(obx[52,:,:])
ax2 = fig.add_subplot(1, 2, 2)
ax2.imshow(rec1[52,:,:])

Comparison of the second magnetization vector component against the input data object (for a given slice):

fig = plt.figure(figsize=(9, 7))
ax1 = fig.add_subplot(1, 2, 1)
ax1.imshow(oby[52,:,:])
ax2 = fig.add_subplot(1, 2, 2)
ax2.imshow(rec2[52,:,:])

2.7. Examples 27

TomoPy Documentation, Release 1.2.1

Comparison of the third magnetization vector component against the input data object (for a given slice):

fig = plt.figure(figsize=(9, 7))
ax1 = fig.add_subplot(1, 2, 1)
ax1.imshow(obz[52,:,:])
ax2 = fig.add_subplot(1, 2, 2)
ax2.imshow(rec3[52,:,:])

Other examples

Three jupyter notebooks with examples as well as with some mathematical concepts related to the vector reconstruc-
tion, can be found in the tomopy/doc/demo folder:

Examples using vector3: input data projections from 3 orthogonal tilt angles:

• vectorrec_1.ipynb

• vectorrec_disk.ipynb

28 Chapter 2. Table of Contents

TomoPy Documentation, Release 1.2.1

Example using vector2: input data projections from 2 orthogonal tilt angles:

• vector_heterostructure.ipynb

The Vector Reconstruction examples html slides can be build by applying (from the doc/demo folder) the following
commands:

jupyter-nbconvert --to slides --post serve vectorrec_1.ipynb

jupyter-nbconvert --to slides --post serve vectorrec_disk.ipynb

jupyter-nbconvert --to slides --post serve vector_heterostructure.ipynb

2.7.5 LPrec

Here is an example on how to use the log-polar based method (https://github.com/math-vrn/lprec) for reconstruction
in Tomopy

%pylab inline

Populating the interactive namespace from numpy and matplotlib

Install lprec from github, then

import tomopy

DXchange is installed with tomopy to provide support for tomographic data loading. Various data format from all
major synchrotron facilities are supported.

import dxchange

matplotlib provide plotting of the result in this notebook. Paraview or other tools are available for more sophisticated
3D rendering.

import matplotlib.pyplot as plt

Set the path to the micro-CT data to reconstruct.

fname = '../../tomopy/data/tooth.h5'

Select the sinogram range to reconstruct.

start = 0
end = 2

This data set file format follows the APS beamline 2-BM and 32-ID definition. Other file format readers are available
at DXchange.

proj, flat, dark, theta = dxchange.read_aps_32id(fname, sino=(start, end))

Plot the sinogram:

plt.imshow(proj[:, 0, :], cmap='Greys_r')
plt.show()

2.7. Examples 29

https://github.com/math-vrn/lprec
http://dxchange.readthedocs.io
http://dxchange.readthedocs.io/en/latest/source/demo.html
http://www.paraview.org/
http://www.aps.anl.gov
https://www1.aps.anl.gov/Imaging
http://dxchange.readthedocs.io/en/latest/source/api/dxchange.exchange.html

TomoPy Documentation, Release 1.2.1

If the angular information is not avaialable from the raw data you need to set the data collection angles. In this case
theta is set as equally spaced between 0-180 degrees.

theta = tomopy.angles(proj.shape[0])

Perform the flat-field correction of raw data:

𝑝𝑟𝑜𝑗 − 𝑑𝑎𝑟𝑘

𝑓𝑙𝑎𝑡− 𝑑𝑎𝑟𝑘

proj = tomopy.normalize(proj, flat, dark)

Select the rotation center manually

rot_center = 296

Calculate

−𝑙𝑜𝑔(𝑝𝑟𝑜𝑗)

proj = tomopy.minus_log(proj)

Reconstruction using FBP method with the log-polar coordinates

recon = tomopy.recon(proj, theta, center=rot_center, algorithm=tomopy.lprec, lpmethod=
→˓'lpfbp', filter_name='parzen')

Mask each reconstructed slice with a circle.

recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)

plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

30 Chapter 2. Table of Contents

TomoPy Documentation, Release 1.2.1

Reconstruction using the gradient descent method with the log-polar coordinates

recon = tomopy.recon(proj, theta, center=rot_center, algorithm=tomopy.lprec, lpmethod=
→˓'lpgrad', ncore=1, num_iter=64, reg_par=-1)
recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

Reconstruction using the TV method with the log-polar coordinates

2.7. Examples 31

TomoPy Documentation, Release 1.2.1

recon = tomopy.recon(proj, theta, center=rot_center, algorithm=tomopy.lprec, lpmethod=
→˓'lptv', ncore=1, num_iter=256, reg_par=2e-4)
recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

Reconstruction using the MLEM method with the log-polar coordinates

recon = tomopy.recon(proj, theta, center=rot_center, algorithm=tomopy.lprec, lpmethod=
→˓'lpem', ncore=1, num_iter=64, reg_par=0.05)
recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
plt.imshow(recon[0, :,:], cmap='Greys_r')
plt.show()

32 Chapter 2. Table of Contents

TomoPy Documentation, Release 1.2.1

2.8 Frequently asked questions

Here’s a list of questions.

Questions

• How can I report bugs?

• Are there any video tutorials?

• Can I run this on a HPC cluster?

• Are there any segmentation routines?

• Are there any tools for aligning projections?

• What is ASTRA toolbox?

• Why TomoPy and ASTRA were integrated?

• Which platforms are supported?

• Does ASTRA support all GPUs?

• What is UFO?

2.8.1 How can I report bugs?

The easiest way to report bugs or get help is to open an issue on GitHub. Simply go to the project GitHub page, click
on Issues in the right menu tab and submit your report or question.

2.8. Frequently asked questions 33

https://github.com/tomopy/tomopy
https://github.com/tomopy/tomopy/issues

TomoPy Documentation, Release 1.2.1

2.8.2 Are there any video tutorials?

We currently do not have specific plans in this direction, but we agree that it would be very helpful.

2.8.3 Can I run this on a HPC cluster?

In their default installation packages, TomoPy and the ASTRA toolbox are limited to running on a multicore single
machine. The ASTRA toolbox, and TomoPy through the presented ASTRA integration, are able to use multiple GPUs
that are installed in a single machine. Both toolboxes can be run on a HPC cluster through parallelization using MPI,
but since installation and running on a HPC cluster is often cluster specific, the default installation packages do not
include these capabilities.

As such, the integrated packages that is presented in the manuscript currently does not support running on a HPC
cluster. Note that the ASTRA toolbox provides a separate MPI enabled package for use on a HPC cluster. We refer to
[C23] for more details about TomoPy’s planned HPC implementation. It is a MapReduce type MPI implementation
layer, which was succesfully used on many clusters, i.e. Stampede, Cori, Mira. There are plans to allow user access to
TomoPy on a HPC cluster (e.g. through a client or webportal), but these projects will take some time before they are
being matured for user’s use.

2.8.4 Are there any segmentation routines?

Some data processing operations can be applied after reconstruction. Examples of these type of operations are image
based ring removal methods, and gaussian filtering or median filtering the reconstructed image. Typicaly, these meth-
ods are called “postprocessing algorithms, since they occur after the reconstruction.

The package does not include segmentation algorithms, since we are currently focused on tomography, while we feel
that segmentation are more part of the application specific data analysis that occurs after tomographic processing. An
important exception is when segmentation steps are used as part of the tomographic reconstruction algorithm, such as
in the DART algorithm.

2.8.5 Are there any tools for aligning projections?

Yes we have. Please check the Examples section for details.

2.8.6 What is ASTRA toolbox?

The ASTRA toolbox provides highly efficient tomographic reconstruction methods by implementing them on graphic
processing units (GPUs). It includes advanced iterative methods and allows for very flexible scanning geometries. The
ASTRA toolbox also includes building blocks which can be used to develop new reconstruction methods, allowing
for easy and efficient implementation and modification of advanced reconstruction methods. However, the toolbox
is only focused on reconstruction, and does not include pre-processing or post-processing methods that are typically
required for correctly processing synchrotron data. Furthermore, no routines to read data from disk are provided by
the toolbox.

2.8.7 Why TomoPy and ASTRA were integrated?

The TomoPy toolbox is specifically designed to be easy to use and deploy at a synchrotron facility beamline. It supports
reading many common synchrotron data formats from disk [C13], and includes several other processing algorithms
commonly used for synchrotron data. TomoPy also includes several reconstruction algorithms, which can be run on
multi-core workstations and large-scale computing facilities. The algorithms in TomoPy are all CPU-based, however,

34 Chapter 2. Table of Contents

http://tomopy.readthedocs.io/en/latest/demo.html

TomoPy Documentation, Release 1.2.1

which can make them prohibitively slow in the case of iterative methods, which are often required for advanced
tomographic experiments.

By integrating the ASTRA toolbox in the TomoPy framework, the optimized GPU-based reconstruction methods
become easily available for synchrotron beamline users, and users of the ASTRA toolbox can more easily read data
and use TomoPy’s other functionality for data filtering and cleaning.

2.8.8 Which platforms are supported?

TomoPy supports Linux and Mac OS X, and the ASTRA toolbox supports Linux and Windows. As such, the combined
package currently supports only Linux, but we are working on supporting more operating systems.

2.8.9 Does ASTRA support all GPUs?

The GPU algorithms are all implemented used nVidia CUDA. As a result, only nVidia CUDA enabled video cards can
be used to run them.

2.8.10 What is UFO?

UFO is a general purpose image processing framework, optimized for heterogeneous compute systems and streams
of data. Arbitrary data processing tasks are plugged together to form larger processing pipelines. These pipelines are
then mapped to the hardware resources available at run-time, i.e. both multiple GPUs and CPUs.

One specific use case that has been integrated into the TomoPy is fast reconstruction using the filtered backprojection
and direct Fourier inversion methods although others for pre- and post-processing might be added in the future.

2.9 Credits

We kindly request that you cite the following article(s) [A1] if you use TomoPy (and also cite [A2] if you use ASTRA
or [A3] if you use UFO). For vector reconstructions please additionally cite [A4].

2.9.1 Applications

2.9.2 References

2.9. Credits 35

TomoPy Documentation, Release 1.2.1

36 Chapter 2. Table of Contents

CHAPTER 3

License

The project is licensed under the BSD-3 license.

37

https://github.com/tomopy/tomopy/blob/master/LICENSE.txt

TomoPy Documentation, Release 1.2.1

38 Chapter 3. License

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

39

TomoPy Documentation, Release 1.2.1

40 Chapter 4. Indices and tables

Bibliography

[A1] Gürsoy D, De Carlo F, Xiao X, and Jacobsen C. Tomopy: a framework for the analysis of synchrotron tomo-
graphic data. Journal of Synchrotron Radiation, 21(5):1188–1193, 2014.

[A2] Pelt D, Gürsoy D, Palenstijn WJ, Sijbers J, De Carlo F, and Batenburg KJ. Integration of tomopy and the astra
toolbox for advanced processing and reconstruction of tomographic synchrotron data. Journal of Synchrotron
Radiation, 23(3):842–849, 2016.

[A3] Vogelgesang M, Chilingaryan S, Rolo T dos Santos, and Kopmann A. Ufo: a scalable gpu-based image pro-
cessing framework for on-line monitoring. In Proceedings of The 14th IEEE Conference on High Performance
Computing and Communication & The 9th IEEE International Conference on Embedded Software and Systems
(HPCC-ICESS), 824–829. 6 2012.

[A4] Hierro-Rodriguez A, Gürsoy D, Phatak C, Quiros C, Sorrentino A, Alvarez-Prado LM, Velez M, Martin JI,
Alameda JM, Pereiro E, and Ferrer S. 3d reconstruction of magnetization from dichroic soft x-ray transmission
tomography. Journal of Synchrotron Radiation, 2018.

[B1] Patterson BM, Cordes NL, Henderson K, Williams JJ, Stannard T, Singh SS, Ovejero AR, Xiao X, Robinson M,
and Chawla N. In situ x-ray synchrotron tomographic imaging during the compression of hyper-elastic polymeric
materials. Journal of Materials Science, 51(1):171–187, 2016.

[B2] Phatak C and Gürsoy D. Iterative reconstruction of magnetic induction using lorentz transmission electron to-
mography. Ultramicroscopy, 150:54–64, 2015.

[B3] Gürsoy D, Biçer T, Lanzirotti A, Newville MG, and De Carlo F. Hyperspectral image reconstruction for x-ray
fluorescence tomography. Optics Express, 23(7):9014–9023, 2015.

[B4] Gürsoy D, Biçer T, Almer JD, Kettimuthu R, Stock SR, and De Carlo F. Maximum a posteriori estimation of
crystallographic phases in x-ray diffraction tomography. Philosophical Transactions A, 2015.

[B5] Duke DJ, Swantek AB, Sovis N, Tilocco FZ, Powell CF, AL Kastengren, Gürsoy D, and Biçer T. Time-resolved
x-ray tomography of gasoline direct injection sprays. SAE International Journal of Engines, 2015.

[B6] Kamke FA, McKinley PE, Ching DJ, Zauner M, and Xiao X. Micro x-ray computed tomography of adhesive
bonds in wood. Wood and Fiber Science, 2016.

[B7] Birkbak ME, Leemreize H, Frohlich S, Stock SR, and Birkedal H. Diffraction scattering computed tomography:
a window into the structures of complex nanomaterials. Nanoscale, 2015.

[B8] Miller SM, Xiao X, and Faber KT. Freeze-cast alumina pore networks: effects of freezing conditions and disper-
sion medium. Journal of the European Ceramic Society, 35(13):3595––3605, 2015.

41

TomoPy Documentation, Release 1.2.1

[B9] Roncal WG, Dyer EL, Gürsoy D, Kording K, and Kasthuri N. From sample to knowledge: towards an integrated
approach for neuroscience discovery. arXiv, 2016.

[C1] Bergamaschi A, Medjoubi K, Messaoudi C, Marco S, and Somogyi A. Mmx-i: data-processing software for
multimodal x-ray imaging and tomography. Journal od Synchrotron Radiation, 23:783–794, 2016.

[C2] Kak AC and Slaney M. Principles of computerized tomographic imaging. Volume 33. SIAM, 1988.

[C3] Dempster AP, Laird NM, and Rubin DB. Maximum likelihood from incomplete data via the em algorithm.
journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[C4] Münch B, Trtik P, Marone F, and Stampanoni M. Stripe and ring artifact removal with combined wavelet–fourier
filtering. Optics Express, 17(10):8567–8591, 2009.

[C5] Dowd BA, Campbell GH, Marr RB, Nagarkar VV, Tipnis SV, Axe L, and Siddons DP. Developments in syn-
chrotron x-ray computed microtomography at the national synchrotron light source. In Proc. SPIE, volume 3772,
224–236. 1999.

[C6] Francesco De Carlo, Doga Gursoy, Daniel Jackson Ching, Kees Joost Batenburg, Wolfgang Ludwig, Lucia
Mancini, Federica Marone, Rajmund Mokso, Daniel M. Pelt, Jan Sijbers, and Mark Rivers. Tomobank: a to-
mographic data repository for computational x-ray science. Measurement Science and Technology, 2017. URL:
https://doi.org/10.1088/1361-6501/aa9c19.

[C7] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applica-
tions to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

[C8] Gursoy D, Hong YP, He K, Hujsak K, Yoo S, Chen S, Li Y, Ge M, Miller LM, Chu YS, De Andrade V, He K,
Cossairt O, Katsaggelos AK, and Jacobsen C. Rapid alignment of nanotomography data using joint iterative re-
construction and reprojection. Scientific Reports, 2017.

[C9] Paganin D, Mayo SC, Gureyev TE, Miller PR, and Wilkins SW. Simultaneous phase and amplitude extraction
from a single defocused image of a homogeneous object. Journal of Microscopy, 206(1):33–40, 2002.

[C10] Tilman D, Felix B, and Andreas S. Automated determination of the center of rotation in tomography data.
Journal of the Optical Society of America A, 23(5):1048–1057, 2006.

[C11] Miqueles EX, Rinkel J, O’Dowd F, and Bermúdez JSV. Generalized titarenko’s algorithm for ring artefacts
reduction. Journal of Synchrotron Radiation, 21(6):1333–1346, 2014.

[C12] Brun F, Pacile S, Accardo A, Kourousias G, Dreossi D, Mancini L, Tromba G, and Pugliese R. Enhanced
and flexible software tools for x-ray computed tomography at the italian synchrotron radiation facility elettra.
Fundamenta Informaticae, 141(2-3):233–243, 2015.

[C13] De Carlo F, Gursoy D, Marone F, Rivers M, Parkinson YD, Khan F, Schwarz N, Vine DJ, Vogt S, Gleber SC,
Narayanan S, Newville M, Lanzirotti T, Sun Y, Hong YP, and Jacobsen C. Scientific data exchange: a schema for
hdf5-based storage of raw and analyzed data. Journal of Synchrotron Radiation, 21(6):1224–1230, 2014.

[C14] Manuel GS, Thurman ST, and Fienup JR. Efficient subpixel image registration algorithms. Optics Letters,
33(2):156–158, 2008.

[C15] Toby HB, Gürsoy D, De Carlo F, Schwarz N, Sharma H, and Jacobsen CJ. Practices and standards for data and
processing at the APS. Synchrotron Radiation News, 28(2):15–21, 2015.

[C16] Hudson HM and Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. Medical
Imaging, IEEE Transactions on, 13(4):601–609, 1994.

[C17] Chang J-H, Anderson JMM, and Votaw JT. Regularized image reconstruction algorithms for positron emission
tomography. Medical Imaging, IEEE Transactions on, 23(9):1165–1175, 2004.

[C18] Mertens JCE and Chawla JJWN. A method for zinger artifact reduction in high-energy x-ray computed tomog-
raphy. Nuclear Instruments and Methods in Physics Research Section A, 800:82–92, 2015.

42 Bibliography

https://doi.org/10.1088/1361-6501/aa9c19

TomoPy Documentation, Release 1.2.1

[C19] Vogelgesang M, Rota L, Ardila Perez Luis E, Caselle M, Chilingaryan S, and Kopmann A. High-throughput
data acquisition and processing for real-time x-ray imaging. In Proc. SPIE, volume 9967, 996715–996715–9.
2016. doi:10.1117/12.2237611.

[C20] De Jonge MD, Ryan CG, and Jacobsen C. X-ray nanoprobes and diffraction-limited storage rings: oppor-
tunities and challenges of fluorescence tomography of biological specimens. Journal of Synchrotron Radiation,
21(5):1031–1047, 2014.

[C21] Rivers ML. Tomorecon: high-speed tomography reconstruction on workstations using multi-threading. In Proc.
SPIE, volume 8506, 85060U–85060U–13. 2012.

[C22] Vo N, Drakopoulos M, Atwood RC, and Reinhard C. Reliable method for calculating the center of rotation in
parallel-beam tomography. Optics Express, 22(16):19078–19086, 2014.

[C23] Biçer T, Gürsoy D, Kettimuthu R, De Carlo F, Agrawal G, and Foster IT. Rapid tomographic image reconstruc-
tion via large-scale parallelization. In Lecture Notes in Computer Science, volume 9233, 289–302. 2015.

[C24] Bhimji W, Bard D, Roumanus M, Paul D, Ovsyannikov A, Friesen B, Bryson M, Correa, Lockwood GK,
Tsulaia V, Byna S, Farrell S, Gürsoy D, Daley C, Beckner V, Van Straalen B, Wright NJ, Antypas K, and Prabhat
M. Accelerating science with the nersc burts buffer early user program. In Cray User Group Conference. 2016.

[C25] Xu W and Feng D. Studying performance of a penalized maximum likelihood method for pet reconstruction on
nvidia gpu and intel xeon phi coprocessor. Proc. 4th Intl Conf. Image Formation in X-ray Computed Tomography,
pages 191–194, 2016.

Bibliography 43

https://doi.org/10.1117/12.2237611

	Contribute
	Table of Contents
	License
	Indices and tables
	Bibliography

